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Journey of wind power at global level
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Source: GWEC



Indian Power System and 2022 RE target

• Installed capacity≈330 GW (1.36 GW in 1947) ; 
Peak demand ≈ 150 GW

• ≈ 300 million people do not have access to 
electricity. 
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RE 

 302 GW at 100 m height
 Target by 2022 is 60 GW of wind and 100 GW of solar 

PV 
 90% of wind potential is in the Southern and the Western 

region
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Technical
 Lack of transmission infrastructure, grid stability, variability of RE sources, weak grid, estimation of 

effective turbine capacity etc.
Regulatory
 Complexity of subsidy structure and involvement of too many agencies
Industrial barriers
 Lack of investment , skilled manpower
Wind resource data collection
 Wind potential calculation requires proper data of wind speed at site .
Social and environmental issues
 Noise pollution from wind farm affects the local region.
 Deforestation for carrying wind turbine and blades 
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Challenges of variable RE (vRE) integration



vRE integration-Technical issues 
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• Increased Flexibility requirement (variability issue)
• Wind-driven displacement of conventional 

synchronous power plant
– low synchronous inertia and possibly increased operating 

reserves
– Diminishing reactive power reserve and short circuit 

power
• Renewable Energy curtailment
• Emerging issues: Post-fault delayed active power 

recovery from wind turbine/plant



Impact on reactive power capability: Ireland
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Evolution of LVRT
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LVRT curve is representative of worst case realistic voltage 
recovery profile that may occur once a power system recovers 
from lowest voltage point. Factors affecting LVRT 
requirements:

• Current and anticipated wind penetration levels

• Strength of grid

• Type of load in the system (predominance of induction 

motor load leads to poor voltage recovery)

• Islanding of system 

• Dynamic voltage support devices in the system and plant 

reactive power headroom
LVRT requirement




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LVRT priority

LVRT curve for Energinet.dk, Denmark

LVRT curve as per EirGrid and Indian wind grid code

EirGrid: T= 625 ms, Vpf=0.9 pu; Vf= 0.15 pu
IEGC (CERC): T =table below, Vpf= 0.8 pu; Vf= 0.15 pu

Table: T for various voltage levels in India

Nominal rated 
voltage (kV)

Fault clearing Time 
(millisecond)

V post fault

(kV)
V fault (kV)

400 100 360 60
220 160 200 33
132 160 120 19.8
110 160 96.25 16.5
66 300 60 9.9
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LVRT  Issues

• IEC 61400-21/IEC 61400-21-1 
– Field testing?

• What about old WTGs?
• How to ensure WTGs are LVRT 

compliant after a period of operation? 
• How to monitor LVRT compliance? 
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Which LVRT priority?



Wind driven displacement of Conventional 
Power Plants (CPPs)-Danish power system
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Offshore WF

Source: Energinet.dk 



Impact on grid security: Danish case study
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Reactive power support from must run CPPs in 
the Danish grid

• Short circuit power
• Dynamic voltage control 

– Reactive power consumption by old wind 
turbines and commutation of HVDC LCC 

• Continuous voltage 
control

(Active power reserves are 
bought in separate markets 
and do not give rise to 
must-run) 
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Must-run was costly 

Source: Energinet.dk (Danish TSO)



Voltage stability considering dynamic reactive power 
compensation in 2030 Danish grid 

Rather et al., 2015

• Refurbished SCs
• New SCs
• STATCOM, SVCs
• Dynamic Q support from WPPs
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Potential solutions to address lack of dynamic reactive 
power reserve in RE integrated system

• Infrastructure reinforcement:
– synchronous condensers, 
– FACTS devices such as SVC, STATCOM, TSSC
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Energinet.dk

Procurement of dynamic reactive power 
through ancillary service market



Operating WPP beyond grid code requirement
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Post-fault delayed active power recovery

Rather et. al, 2017





LVRT priority: active or reactive power?
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Voltage at TW1(WPP1 terminal)

Active power from WPP

Grid frequency

Active and reactive current


